<u>Unit 6 -The Hydrosphere (**=tested items)</u>

Distribution of Water On Earth

- 71% of Earth is water
 - 97% in the oceans
 - 3% is freshwater
 - 2% in ice and glaciers
 - 0.6% in underground water
 - 0.4% in rivers, streams, lake and atmosphere

<u>The Water Cycle</u>**-----Water is constantly moving among the oceans, the atmosphere, the solid earth and biosphere

- A. Evaporation: liquid water changes into water vapor
- B. Precipitation: liquid or solid water from the clouds
- C. Condensation: water vapor that turns into liquid making clouds
- D. Infiltration: liquid water moving through the ground
- E. Transpiration: water vapor released to the air by plants
- F. Runoff: when liquid hit the ground but not absorbed

****What does Water Balance Mean?**---- Precipitation equals evaporation

****How is Water Used?**

• 70% in Irrigation

- 20% in Industries
- 10% in Cities and Residences

Ocean Currents --- Is the mass of ocean water that flows from one place to another

<u>**How do Currents Influence Climate?</u>

- Exchanges heat in the water with the atmosphere
- Type of current nearby influences weather for an areas
 - Warm currents bring warm temperatures
 - Cold currents bring cooler temperatures

<u>**Current Movement</u>

Warm Currents	Cold Currents
 Move from the tropics to the poles 	 Move from the poles to the equators
- Ex: Gulf Stream (east coast of the US)	 Ex: Canary Current
**When do Connert Morros?	

<u>** Why do Current Moves?</u>	
Primary Forces	Secondary Forces
- Solar heating, winds, gravity, Coriolis	 Influences where the current flows

Freshwater Facts

- Primary use for freshwater in U.S. is for agriculture
- In our homes, we use the most freshwater to wash, clean and flush.
- The typical person in an industrialized nation uses 700-1000 gallons of freshwater per week

****What is Groundwater?**

- Water that is below the surface
- 50% of water used by the public is groundwater

**How does water become Groundwater?

- Permeability
 - How easily water can pass through connected pore spaces
- Porosity
 - Percentage of pore spaces in soil and rock
 - Clay has the smallest percentage (not permeable)

****Aquifers**----Underground layer of water bearing permeable rock (gravel, sand or silt) from which ground water can be extracted using a well

**Wells

- A hole bored into the zone of saturation
- Pumping can cause the water table to be lowered
- Artesian Well----Groundwater rises on its own under pressure
- Cone of depression --- Occurs in an aquifer when a lot of groundwater is pumped from the well

****Problems with Groundwater**

- Withdrawing water for agriculture
- Toxic metals contaminating the water (arsenic, cadmium, lead)
- Salt water intrusion
 - Salt water from the ocean enters the groundwater near coastal areas

**What is a Flood?

- When the stream or river overloads the capacity of its channel and overflows it banks
- Most floods are caused by rapid spring snow melting or storms that bring heavy rains over a large region

****How to control Floods?**

- Artificial Levees
 - Concrete or Earthen mounds built on the banks of a river
 - Increases the amount of water it can hold
- Natural Levees
 - Parallels a stream and helps to contain its water, except during flood stage
- Flood-Control Dams
 - Stores floodwater and lets it out slowly
- Limit Development
 - Preserve floodplains instead of building on them

Human Activities Causing Flooding

• Removing vegetation

• Mining

• Overgrazing

floodplainsLogging

Building on

- Forest fire
- ****Types of Water Pollution**
 - Oxygen Demanding Agents
 - Organic waste and manure
 - Toxic Metals
 - Acids, arsenic, lead

- Destruction of wetlands
- Urbanization
- Inorganic Plant Nutrients
 - Nitrogen and phosphorus
- Organic Chemicals
 - Oil, detergents, pesticides
- Sediment
 - Erosion and soil

****Oxygen Demanding Agents**

- Oxygen is removed from water by bacteria (B.O.D)
- Fish can't live in streams without oxygen

**B.O.D Effect on Water Quality

- All streams have the ability to breakdown organic waste
- Problem is when a stream is overloaded with organic waste

Toxic Metals

- Toxic metals leaches into the water
- Ex.----Arsenic, Lead, Mercury and Cadmium

Inorganic Plant Nutrients

- Sources
 - Human, animals and industrial waste
 - Excessive use of fertilizers for crops, lawns and homes

<u>Sediment</u>

- #1 source of water pollution
- Clouds the water
- Blocks sunlight for the aquatic plants

****Drinking Water Quality**

- Drinking water is by
 - Storage in reservoirs (suspended matter settles

- Treated by sand filters
- Activated charcoal
- Addition of chlorine

<u>**Sewage or Wastewater</u>

- Composed of sewage and wastewater from
 - Used water and toilets
 - Industries

<u>**Wastewater Treatment</u>

- Wastewater Treatment Plants
 - Treat large volumes of municipal or industrial waste
- Septic Tanks
 - Treat small volumes of waste, no chlorine used

<u>**Protecting The Water</u>

- Clean Water Act (1972)
 - Regulates the discharge of pollutants in the US river and streams

• Safe Drinking Water Act (1974)

- Protect the quality of drinking water
- Water treatment plants
- Well water

****Water Conservation Methods**

- Repair leaking faucets and pipes
- Landscape using plants requiring little water
- Use water saving appliances
- Purify and reuse water

• Use drip irrigation